

Detecção de Duplicados em Bases de Dados XML

Luís Miguel Gomes dos Santos Reis Leitão

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática e de Computadores

Resumo Alargado

Setembro 2007

Structure-Based Inference of XML Similarity
for Fuzzy Duplicate Detection

Luis Leitao
IST/INESC-ID

Av. Professor Cavaco Silva
2744-016 Porto Salvo,

Portugal
lsrl@mega.ist.utl.pt

Pavel Calado
IST/INESC-ID

Av. Professor Cavaco Silva
2744-016 Porto Salvo,

Portugal
pavel.calado@tagus.ist.utl.pt

Melanie Weis
Hasso Plattner Institut

Prof.-Dr.-Helmert-Strasse 2-3
14482 Potsdam, Germany
melanie.weis@hpi.uni-

potsdam.de

ABSTRACT
Fuzzy duplicate detection aims at identifying multiple repre-
sentations of real-world objects stored in a data source, and
is a task of critical practical relevance in data cleaning, data
mining, or data integration. It has a long history for rela-
tional data stored in a single table (or in multiple tables with
equal schema). Algorithms for fuzzy duplicate detection in
more complex structures, e.g., hierarchies of a data ware-
house, XML data, or graph data have only recently emerged.
These algorithms use similarity measures that consider the
duplicate status of their direct neighbors, e.g., children in
hierarchical data, to improve duplicate detection effective-
ness. In this paper, we propose a novel method for fuzzy du-
plicate detection in hierarchical and semi-structured XML
data. Unlike previous approaches, it not only considers the
duplicate status of children, but rather the probability of
descendants being duplicates. Probabilities are computed
efficiently using a Bayesian network. Experiments show the
proposed algorithm is able to maintain high precision and
recall values, even when dealing with data containing a high
amount of errors and missing information. Our proposal is
also able to outperform a state-of-the-art duplicate detection
system on three different XML databases.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases

General Terms
Standardization, Algorithms, Experimentation

Keywords
XML, Duplicate detection, Bayesian networks

1. INTRODUCTION
Fuzzy duplicate detection consists in the automatic deter-

mination of different representations of real-world objects
stored in a data source. Fuzzy duplicate detection is of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

critical practical relevance in many applications, including
data cleaning [20], data integration [7], and personal infor-
mation management [8]. Ironically, the problem has been
considered under various names, e.g., record linkage [28],
merge/purge [12], reference reconciliation [8], or entity res-
olution [3]. In this paper, we refer to the problem as fuzzy
duplicate detection, or duplicate detection for short.

Duplicate detection has been studied extensively for rela-
tional data stored in a single table. Algorithms performing
duplicate detection in a single table generally compare tu-
ples (each of which represents an object) based on attribute
values. However, data usually comes in more complex struc-
tures, e.g., data stored in a relational table relates to data
in other tables through foreign keys. Recently, duplicate
detection algorithms for data stored in such complex struc-
tures have been proposed [2, 14, 26]. These approaches have
in common that they do not only consider attribute values,
but also relationships to related data.

We propose a novel method for duplicate detection in
XML data. Detecting duplicates in XML is more challenging
than detecting duplicates in relational data because there is
no schematic distinction between object types among which
duplicates are detected and attribute types describing ob-
jects. Furthermore, instances of a same object type may
have different structure on instance level, whereas tuples
within relations always have the same structure. We call
these challenges candidate-description ambiguity and struc-
tural diversity [26]. On the other hand, XML duplicate de-
tection allows to exploit the hierarchical structure for ef-
ficiency in addition to effectiveness, which is not the case
when detecting duplicates in graph data.

The duplicate detection method we propose uses a Baye-
sian network model to compute the probability of any two
XML objects, represented by XML elements, being dupli-
cates. It considers the hierarchical structure of XML ele-
ments by considering probabilities for descendant XML ele-
ments as well. The model is built automatically based on the
structure of the objects being compared. Since the structure
contains no cycles, the duplicate probability can be deter-
mined efficiently. Our approach not only provides a strong
formal basis for the proposed solution, but it is also flexible
enough to easily adapt to different databases from different
domains.

Experiments on artificial and real-world data show that
the proposed method is able to achieve highly accurate re-
sults, yielding both high precision and recall in all cases. To
further validate these results, a comparison was made with

293

mv1

dr1 cst1

ac1 ac2

titleyear

mv1

dr1 cst1

ac1 ac3

titleyear

ac21983 Pros
and

Cons

John S.

Tempelton
P.

H.M.
Murdock

1983
Pros
and

Cons
J. Smith

T.
Peck

B.A.
Baracus Murdock

Tree U Tree U‘

Figure 1: Two XML trees, each representing a
movie (mv) nesting directors (dr), a cast (cst) and
actors (ac).

a state-of-the-art XML duplicate detection system, Dog-
matiX [26], achieving consistently better results in all tested
databases.

This paper makes the following main contributions: (i) it
introduces a novel duplicate detection method, based on a
Bayesian network model; (ii) the method not only consid-
ers children XML elements, but considers descendant XML
elements, i.e., complete subtrees; (iii) the method not only
considers the duplicate status (duplicate or non-duplicate)
of children, but considers the probability that descendants
are duplicates, thus allowing a more accurate computation
of the final probability; and (iv) the method is shown to
perform accurately in three different datasets, two of which
derived form real-world XML databases.

The remainder of this paper is organized as follows. In
Sec. 2, we describe the basic idea underlying our similarity
measure. Secs. 3 and 4 then describe how XML duplicate
detection is performed using the proposed Bayesian network
model. We evaluate our algorithm in Sec. 5. Related work
is covered in Sec. 6, before we conclude in Sec. 7.

2. MOTIVATING EXAMPLE
In this section, we first introduce XML duplicate detec-

tion, then present how a Bayesian network is constructed,
and finally give an intuition of how XML similarity is com-
puted.

2.1 XML Duplicate Detection
The goal of XML duplicate detection is to identify XML

elements representing the same real-world object. In this
work, we assume a schema mapping step has preceded du-
plicate detection, so that all XML documents comply to the
same schema. As an example, consider the tree represen-
tation of two XML elements represented in Fig. 1 (nodes
are labeled by their XML tag name and an index for fu-
ture reference). Both trees represent XML elements named
mv. These elements have two attributes, namely year and
title. They nest further XML elements representing direc-
tors (dr) and casts (cst). A cast consists of several actors
(ac), represented as children XML elements of cst. Year,
title, dr, and ac have a text node which stores the actual
data. For instance, year has a text node containing 1983 as
string value.

In this example, the goal of duplicate detection is to detect
that both movies are duplicates, although director and actor
names are represented differently. To do this, we make the
following assumption: The fact that two nodes are duplicates
depends only on the fact that their values are duplicates and
that their children are duplicates.

This means that movies, represented by nodes tagged mv
are duplicates depending on whether or not their children

nodes (tagged dr and cst) and their values for attributes
year and title are duplicates. Further, the nodes tagged dr
are duplicates depending on whether or not their values are
duplicates and the nodes tagged cst are duplicates depend-
ing on whether or not their children nodes (tagged ac) are
duplicates. This process goes on recursively until the leaf
nodes are reached. If we consider trees U and U ′ of Fig. 1,
this process can be represented by a Bayesian network (BN),
as explained in the following sections.

2.2 Bayesian Network for Duplicate Detection
Before we outline how the Bayesian network for XML

duplicate detection is constructed, we provide some back-
ground knowledge and notation on Bayesian networks.

2.2.1 Bayesian Networks
Bayesian networks provide a graphical formalism to ex-

plicitly represent the dependencies among the variables of
a domain, thus providing a concise specification of a joint
probability distribution [18]. This representation is based
on a directed acyclic graph where a set of random variables
makes up the nodes of the network and a set of directed
links connects pairs of nodes. In this graph, an edge from
one node to another means that the first has a direct influ-
ence on the second. This influence is quantified through a
conditional probability distribution function correlating the
states of each node with the states of its parents.

To illustrate, let X and Y be two random variables and let
x and y be two of their respective values. We use X and Y
to refer to the random variables as well as to the nodes in the
network associated with these variables. An edge directed
from Y , the parent node, to X, the child node, represents
the influence of the variable Y on the variable X, which is
quantified by the conditional probability P (x|y). In general,
let P be the set of all parent nodes of a node X. Further,
let p be a set of values for all the variables in P and let x be
a value of the variable X. The influence of P on X can be
modeled by any function F such that

P
x F (x,p) = 1 and

0 ≤ F (x,p) ≤ 1. The function F (x,p) provides a numerical
quantification for P (x|p).

A key advantage of Bayesian networks is their synthesized
representation of probabilistic relationships. In fact, it is
necessary to consider only the known independencies among
the variables in a domain, rather than specifying a complete
joint probability distribution. The dependencies declared at
modeling time are used to infer beliefs for all variables in
the network. The inference mechanism, though exponential
in the worst case, is efficient in many practical situations,
particularly in those shown in this work.

2.2.2 Bayesian Network Structure
For XML duplicate detection, we construct a Bayesian

network as follows. Let us first consider the XML nodes
tagged mv. As illustrated in Fig. 2, the BN will have a node
labeled mv11 representing the possibility of node mv1 in the
XML tree U being a duplicate of node mv1 in the XML tree
U ′. Node mv11 is assigned a binary random variable. This
variable takes the value 1 (active) to represent the fact that
the XML mv nodes in trees U and U ′ are duplicates. It
takes the value 0 (inactive) to represent the fact that the
nodes are not duplicates.

The probability of the two XML nodes being duplicates
depends on (1) whether or not their values are duplicates,

294

mv11

Vmv11Vmv11

dr11 cst11

ac**

ac1* ac2*

ac11 ac12 ax13 ac21 ac22 ac23

Cmv11Cmv11

Vdr11Vdr11 Ccst11Ccst11

Vac11Vac11 Vac12Vac12 Vac13Vac13 Vac21Vac21 Vac22Vac22 Vac23Vac23

mv11[year] mv11[title]

ac11[value]

dr11[value]

ac12[value] ac13[value] ac21[value] ac22[value] ac23[value]

Two values

Value sets (V) or
childen sets (C)

Two nodes

Duplicate probability of:

Figure 2: Bayesian network to compute the similar-
ity of the trees in Fig. 1.

and (2) whether or not their children are duplicates. This
is in accord with our assumption stated in Sec. 2.1. Thus,
node mv11 in the BN has two parent nodes, as shown in
Fig. 2. Node Vmv11 represents the possibility of the values in
the mv nodes being duplicates. Node Cmv11 represents the
possibility of the children of the mv nodes being duplicates.
As before, a binary random variable, that can be active or
inactive, is assigned to these nodes, representing the fact
that the values and children nodes are duplicates or non-
duplicates, respectively.

We assume that the probability of the XML node values
being duplicates depends on each attribute independently.
This is represented in the network by adding new nodes
for the attributes as parents of node Vmv11 , represented as
rectangles in Fig. 2. In this case, these new nodes represent
the possibility of the year values in the mv nodes being
duplicates and of the title values in the mv nodes being
duplicates.

Similarly, the probability of the children of the mv nodes
being duplicates depends on the probability of each pair of
children nodes being duplicates. Thus, two more nodes are
added as parents of node Cmv11 : node dr11 represents the
possibility of node dr1 in tree U being a duplicate of the
node dr1 in tree U ′; node cst11 represents the possibility of
node cst1 in tree U being a duplicate of node cst1 in tree
U ′.

We can now repeat the whole process for these two nodes.
However, a slightly different procedure is taken when repre-
senting multiple nodes of the same type, as is the case for the
XML nodes labeled ac. In this case, we wish to compare the
full set of nodes, instead of each node independently. Thus,
we say that the set of ac nodes being duplicate depends on
each ac node in tree U being a duplicate of any ac node in
tree U ′. This is represented by nodes ac∗∗, ac1∗, and ac2∗
in the BN of Fig. 2.

Finally, each acij node represents the possibility that node
aci in tree U is a duplicate of node acj in tree U ′. Since
the ac nodes have no children, their probability of being
duplicates only depends on their values. Thus, each node
acij in the network has only one parent node Vacij . Since

Conditional Probability
P (Vmv11 |mv11[year],mv11[title])

P (Vdr11 |dr11[value])
P (Vacij |acij [value])

Conditional Probability
P (Cmv11 |dr11, cst11)

P (Ccst11 |ac∗∗)

(a) CP1 (b) CP2

Conditional Probability
P (mv11|Vmv11 , Cmv11)

P (dr11|Vdr11)
P (cst11|Ccst11)
P (acij |Vacij)

Conditional Probability
P (ac∗∗|ac1∗, ac2∗)

P (aci∗|aci1, aci2, aci3)

(c) CP3 (d) CP4

Table 1: Sample conditional probabilities

each ac node has only one value, each node Vacij in the
network has only one parent representing the possibility of
both XML nodes, aci and acj , having duplicate values.

A formalization of how the BN is constructed is provided
in Sec. 3. Before that, we give readers an intuition of how
this BN is used for XML duplicate detection.

2.2.3 Computing Probabilities
Using the network of Fig. 2 we can now compute the prob-

ability P (mv11) of trees U and U ′ being duplicates. In fact,
we can compute the probability of any comparable pair of
nodes, one from each tree, being duplicates and we can use
any a priori knowledge that we might have on any other
pair of nodes being duplicates. For instance, if we know
that nodes ac2 (from tree U) and ac3 (from tree U ′) are du-
plicates, we can compute the probability of the trees being
duplicates as P (mv11|ac23). Or we can compute the proba-
bility of the cast in two movies being equal if the directors
are the same, i.e. P (cst11|dr11).

We are mainly interested in the probability of the root
nodes being duplicates P (mv11), which can be interpreted
as a similarity value between the two XML objects. To ob-
tain this probability, we first need to define the prior prob-
abilities associated to the leaf nodes of the network and the
conditional probabilities associated to the inner nodes of the
network.

In the network in Fig. 2, we need to define the prior
probabilities of values being duplicates in the context of
their parent XML node, e.g., P (mv11[year]), P (mv11[title]),
P (dr11[value]), and P (acij [value]).

We further need to define four types of conditional proba-
bilities: (1) the probability of the values of the nodes being
duplicates, given that each individual pair of values contains
duplicates; (2) the probability of the children nodes being
duplicates, given that each individual pair of children are du-
plicates; (3) the probability of two nodes being duplicates
given that their values and their children are duplicates;
and (4) the probability of a set of nodes of the same type
being duplicates given that each pair of individual nodes in
the set are duplicates. In our example, these four types of
conditional probabilities (denoted CP1 through CP4) cor-
respond to the respective probabilities listed in Tab. 1(a)
through (d).

In this section, we provided an intuitive overview of how
we use a Bayesian network for XML duplicate detection.
The following two sections provide the technical details for
constructing the Bayesian network and computing the prob-
abilities, respectively.

295

3. BAYESIAN NETWORK CONSTRUCTION
Formally, an XML tree is defined as a triple U = (t, V, C),

where

• t is a root tag label, e.g., for tree U in Fig. 1, t = mv1.

• V is a set of (attribute,value) pairs. If the node it-
self has a value, we can consider it as a special (at-
tribute,value) pair. For tree U in Fig. 1, we have
V = {(year, ‘1983’), (title, ‘Pros and Cons’)}.

• C is a set of XML trees, i.e., the sub-trees of U . For
tree U in Fig. 1, C contains subtrees rooted at dr
and cst. These subtrees are again each described by a
triple.

We say that two XML trees are duplicates if their root
nodes are duplicates.

Algorithm 1: BNGen(XTreeSet U, XTreeSet U′)

Input: U = {(t1, V1, C1), (t2, V2, C2), . . . },
U ′ = {(t′1, V ′

1 , C′
1), (t′2, V ′

2 , C′
2), . . . }

Output: A directed graph G = (N, E)
/* -------------- Initialization --------------- */
/* Root node tags of all XML trees in U and U ′ */
S ← {t1, t2, . . .};1

S′ ← {t′1, t′2, . . .};2

/* Tags in S and S′ representing real-world type r */
Sr = {ti ∈ S|Tti = r};3

S′
r = {t′i ∈ S′|Tt′

i
= r};4

/* -------------- BN Construction --------------- */
foreach type r ∈ S ∪ S′ do5

/* Nodes with single occurrence */
if |Sr | ≤ 1 and |S′

r| ≤ 1 then6

Insert into N a node tii;7

if Vi ∪ V ′
i �= ∅ then8

Insert into N a node Vtii ;9

Insert into E an edge from this node to node tii;10

if Ci ∪ C′
i �= ∅ then11

Insert into N a node Ctii ;12

Insert into E an edge from this node to node tii;13

if node Vtii was created then14

foreach attribute a ∈ Vi ∪ V ′
i do15

Create a node tii[a];16

Insert an edge from this node to node Vtii ;17

if node Ctii was created then18

G′ = (N ′, E′)← BNGen(Ci, C′
i);19

foreach node n ∈ N ′ do20

Insert n into N ;21

foreach edge e ∈ E′ do22

Insert e into E;23

foreach node n ∈ N ′ without outgoing edges do24

Insert an edge in E from n to node Ctii ;25

/* Nodes with multiple occurrences */
else if Sr or S′

r contain more than one tag each then26

Insert into N a node t∗∗;27

foreach tag ti ∈ Sr do28

Insert into N a node ti∗;29

Insert into E an edge from this node to node t∗∗;30

foreach tag t′j ∈ S′
r do31

Insert into N a node tij ;32

Insert into E an edge from this node to node33

ti∗;

foreach newly created node tij do34

Similar to processing of node tii (lines 8-25),35

second subscript i is replaced by j...

To every node with a given tag, we can associate a real-
world type. We define Tt as the real-world type associated
with the nodes of tag t. We define the type of an XML
tree as the type of its root node. We assume that two trees
can only be duplicates if they are of the same type. Also,
two nodes can be compared only if they are of the same
type. In our example, the real-world types are Tmv = movie,
Tdr = director, Tcst = cast, and Tac = actor. For simplicity,
in the subsequent definitions we assume that nodes with the
same real world type also have the same tag. That is, a
relabeling step has preceded the construction of the BN.

In Algorithm 1, we provide pseudo-code for constructing
the Bayesian network, as outlined in Sec. 2, from the struc-
ture of the XML trees being compared. The algorithm takes
as input two sets of XML trees U and U ′, from which root
node tag names of a given real-world type r are extracted
(lines 1-4). When processing nodes of real-world type r, we
distinguish between node types occurring at most once (l.6)
and node-types with multiple occurrences (l.26). The dif-
ference is that in the first case, only a single node Vii and
a single node Cii needs to be constructed, whereas in the
latter case, we need to construct a node tij for every combi-
nation of nodes ti and tj of same type, as well as nodes t∗∗,
ti∗. When applying this function to the XML trees U and
U ′ of Fig. 1, we obtain the graph in Fig. 2.

4. DEFINING THE PROBABILITIES
To complete the Bayesian network constructed as described

in the previous section, we need to define the prior proba-
bilities associated to the network’s leaf nodes and the condi-
tional probabilities associated to the network’s inner nodes,
as illustrated in Sec. 2.2.3. In both cases, our model takes
an epistemological view of the problem, where probabilities
are interpreted as degrees of belief that can be specified in-
dependently of experimentation.

In the following, for simplicity, we will use the notation
P (x) to mean P(x = 1). We will assume that all probabili-
ties P (x = 0) are defined as P (x = 0) = 1 − P (x = 1).

4.1 Prior Probabilities
In our model, prior probabilities represent the likelihood

that two values in the XML trees are the same. They are as-
sociated with nodes labeled as tij [a], where a is an attribute
name. For instance, in the case of the network in Fig. 2, we
need to define the prior probability P (mv11[year]) of both
years in the mv XML nodes being the same.

These probabilities can be defined based on the similar-
ity between values. For instance, the probability of the title
attributes in two movies being the same can be a string sim-
ilarity between both titles. If we normalize this similarity
to a value between 0 and 1, we can apply it as a proba-
bility value. However, it is sometimes not possible, or not
efficient, to measure the similarity between two attribute
values. In this case, we define the probability as a small
constant, representing the (small) possibility of any two val-
ues being duplicates before we observe them.

Thus, we define

P (tij [a]) =

j
sim(Vi[a], Vj [a]) if similarity was measured
ka otherwise

(1)
where Vi[a] is the value of attribute a of the i − th node
with tag t in the XML tree, sim(·) is a similarity function,

296

normalized to fit between 0 and 1, and ka is a small con-
stant, representing the probability of two values of attribute
a being similar. We name constant ka the default probability.

For instance, for the year attribute in the mv nodes, we
can define sim(y1, y2) = 1 if y1 = y2, and sim(y1, y2) = 0
otherwise. The default probability kyear can be derived from
the distribution of years in the database, or simply be set to
a small number.

4.2 Conditional Probabilities
As discussed in Sec. 2.2.3, four types of conditional proba-

bilities (CP1 through CP4) are present in our model. In this
section, we discuss how we compute each type of conditional
probability.
Conditional Probability CP1. CP1 denotes the proba-
bility of the values of the XML nodes being duplicates given
that their attribute values are duplicates. Formally, this cor-
responds to P (Vtij |tij [a1], tij [a2], . . .) and is a function of
the values of the Bayesian network nodes tij [a1], tij [a2], . . .
This function can be arbitrarily defined, as long as it con-
forms to the axioms of probability.

We therefore propose to define this probability as follows:
(a) if all attribute values are duplicates, we consider the
XML node values as duplicates; (b) if none of the attribute
values are duplicates, we consider the XML node values as
non-duplicates; (c) if some of the attribute values are dupli-
cates, we determine that the probability of the XML nodes
being duplicates equals a given value, wa. This value repre-
sents the importance of the corresponding attribute in de-
termining if the nodes are duplicates.

This definition is represented in Eq. (2).

P (Vtij |tij [a1], tij [a2], . . . , tij [an]) =
X

1≤k≤n|tij [ak]=1

wak (2)

subject to
P

1≤k≤n wak = 1.
For instance, in the network of Fig. 2, we could use wyear =

0.1 and wtitle = 0.9, meaning that if the years are equal,
there is a 10% chance of the nodes being duplicates, but if
the titles are equal, then there is a 90% chance of the nodes
being duplicates. These values can be learned from data or
empirically determined.
Conditional Probability CP2. The probability of con-
sidering children nodes as duplicates, given that each pair
of comparable children nodes is a duplicate, is denoted CP2
and formally defined as P (Ctij |t1ij , t2ij , . . .). Intuitively, it
makes sense to say that two nodes are duplicates only if all
of their child nodes are also duplicates. However, it may
be the case that, for instance, the XML tree is incomplete
or contains erroneous information. Thus, we relax this as-
sumption and state that the more child nodes in both trees
are duplicates, the higher the probability that the parent
nodes are duplicates. This is represented by Eq. (3).

P (Ctij |t
1
ij , t

2
ij , . . . , t

n
ij) =

1

n
×

nX
k=1

tk
ij (3)

According to Eq. (3), the probability is directly proportional
to the number of child nodes that are duplicates.

For instance, in the network of Fig. 2, the probability
P (Cmv11 |dr11, cst11) is defined as P (Cmv11 |dr11, cst11) =
(dr11 + cst11)/2.
Conditional Probability CP3. To define the probabili-
ties of two nodes being duplicates given that their values and

their children are duplicates, i.e., P (tij |Vtij , Ctij), we con-
sider the nodes as duplicates if both their values and their
children are duplicates. Thus, the probability is defined as
in Eq. (4).

P (tij |Vtij , Ctij) =

j
1 iff Vtij = Ctij = 1
0 otherwise

(4)

Conditional Probability CP4. Finally, we define the
probabilities of a set of nodes of the same type being du-
plicates given that each pair of individual nodes in the set
are duplicates, i.e., P (t∗∗|t1∗, t2∗, . . .) and P (ti∗|ti1, ti2, . . .).
We start by defining the probability P (t∗∗|t1∗, t2∗, . . .), of
the set of nodes being duplicates given that each of its nodes
is a duplicate. As before, we assume that the more nodes
are duplicates, the higher the probability that the whole set
of nodes is a duplicate. The probability can thus be defined
as shown in Eq. (5).

P (t∗∗|t1∗, t2∗, . . . , tn∗) =
1

n

nX
k=1

tk∗ (5)

We can now define the probability P (ti∗|ti1, ti2, . . .), which
reflects the fact that a node in an XML tree is a duplicate
if it is a duplicate of at least one node of the same type in
the other XML tree. This is represented in Eq. (6).

P (ti∗|ti1, ti2, . . . , tin) =

j
1 iff ∃j | tij = 1
0 otherwise

(6)

4.2.1 Final Probability
Once all prior and conditional probabilities are defined,

the Bayesian network can be used to compute the probabil-
ity of two XML trees being duplicates, i.e. P (t11), where
t is the tag for the root node of both trees. This can be
achieved by any probability propagation algorithm, such as
those described in [18].

We can illustrate the probability computation for the net-
work of Fig. 2, where we wish to compute the probability of
XML trees U and U ′ being duplicates, i.e., P (mv11). Ac-
cording to the network, and applying Eq. (4), the probability
is defined as:

P (mv11) =X
Vmv11 ,Cmv11

P (mv11|Vmv11 , Cmv11)P (Vmv11)P (Cmv11)

= P (Vmv11) × P (Cmv11) (7)

Similarly, by applying Eq. (2), probability P (Vmv11) is
defined as:

P (Vmv11) = wyearP (mv11[year]) + wtitleP (mv11title) (8)

As for probability P (Cmv11), according to Eq. (3), we
have:

P (Cmv11) =
P (dr11) + P (cst11)

2
(9)

We now proceed by computing probability P (dr11), using
Eqs. (4) and (2), as follows:

P (dr11) = wvalueP (dr11[value]) = P (dr11[value]) (10)

since wvalue = 1, according to Eq. (2).
Similarly, for P (cst11), using Eqs. (3) and (5):

P (cst11) = P (ac∗∗) =
P (ac1∗) + P (ac2∗)

2
(11)

297

Using Eqs (6) and (2) we can compute probability P (ac1∗)
as:

P (ac1∗) = 1 −
3Y

i=1

(1 − P (ac1i[value])) (12)

A similar equation can be obtained for P (ac2∗).
Finally, joining Eqs. (7) through (12), we have:

P (mv11) =“
wyearP (mv11[year]) + wtitleP (mv11[title])

”

×
“
P (dr11[value]) +

`
1 −

3Y
i=1

(1 − P (ac1i[value]))

+ 1 −
3Y

i=1

(1 − P (ac2i[value]))
´
× 1

2

”
× 1

2
(13)

4.2.2 Efficiency and Limitations
It can be easily seen that, if the XML trees being com-

pared do not have multiple nodes of the same type, the pro-
cedure proposed in Sec. 3 is linear in the number of nodes
of the largest tree, since a constant number of nodes in the
network is created for each pair of nodes in the XML trees.
Nevertheless, if multiple nodes of the same type do occur,
the resulting procedure could be of in the order of O(n×n′),
where n and n′ are the number of nodes in each tree being
compared. However, this would only occur in the worst case,
if every type in the XML trees (except for the root nodes)
would allow repetition of its elements. Since this is a scal-
ability issue, it is, for now, outside the scope of this paper,
although it shall be explored in future work. Furthermore,
we note that, in practice, the model construction procedure
is used only once. Since we assume that all objects in the
dataset comply to the same schema, the model will be the
same for all objects, having only a small change when com-
puting the probabilities for repeating nodes of the same type,
accounting for the different number of nodes that can occur.

Finally, since the Bayesian network built has no cycles,
computing the probabilities is linear in the number of nodes
in the network. As can be seen by Eqs. (1) through (6), all
probabilities can be computed in linear or constant time (if
we account for the cost of computing the similarity between
XML node values as constant).

5. EVALUATION
We now evaluate our similarity measure developed for

XML duplicate detection in terms of effectiveness on both
artificial and real world data. Our evaluation covers (i) the
impact of default probability on effectiveness, (ii) the im-
pact of data quality on effectiveness, i.e., how errors (e.g.,
typos or missing data) and error frequencies affect the re-
sult, and (iii) a comparison to DogmatiX [26], a state of the
art similarity measure for XML duplicate detection.

5.1 Data Sets
To test our approach, we used the following three datasets.

Artificial Data. The first data set, named the IMDB
dataset, consists of 4, 288 distinct objects representing movies,
extracted from the Internet Movie Database1. For the ex-
periments, a set of 4, 288 artificially generated duplicate ob-

1http://www.imdb.com

movie

credits

castdirectordirectordirector authorauthorauthor

cast_membercast_membercast_member

cd

artistartistartist artistartistdtitle tracks

artistartisttitle

artisingleton mandatory element

singleton optional element

multiple-occurrence mandatory element

multiple-occurrence optional element

IMDB FreeDB

Figure 3: IMDB and FreeDB XML schemas

jects were added to the collection2. Each generated object
is a duplicate of one of the initial database, and may con-
tain the following errors: (i) typographical errors, (ii) miss-
ing data (e.g., a missing title), and (iii) duplicate erroneous
data (e.g., the same movie containing two different titles).
Unless stated otherwise, typographical errors, missing data,
and duplicate erroneous data occur with 20%, 10%, and 8%
probability, respectively.
Real-World Data. The two remaining data sets consist of
real world data. The IMDB+FilmDienst dataset was gener-
ated by integrating 500 movie objects extracted form IMDB
and the same 500 movies extracted from FilmDienst3. No
artificial data was generated.

The FreeDB dataset contains 10, 000 distinct objects, rep-
resenting CDs, extracted from the FreeDB database4. With
a lot of manual effort, we managed to identify all duplicates
within this data set. We found 300 duplicate CD pairs (each
pair has been classified as duplicate or non-duplicate in a
double-blind process). According to statistics we collected
from users performing the manual classification, 17.3% of
duplicate classifications are due to missing data, 12.1% to
typographical errors, and 11.8% to duplicate erroneous data.
The remaining classifications are due to other types of errors
we identified, but are not listed here for brevity.

Fig. 3 shows the schemas for the above datasets. The
schema we considered for the IMDB and IMDB+FilmDienst
datasets is labeled simply as IMDB.

5.2 Experimental Setup
The experiments performed on all datasets aim at deter-

mining the effectiveness of the BN model we propose in de-
termining if a given pair of XML objects are duplicates. The
network constructed for both collections is parameterized as
described in Sec. 4. Only objects whose duplicate probabil-
ity is above or equal to 0.6 are considered duplicates. This
threshold was set according to previous empirical results.

We consider all values as textual strings and use p = 1 −
ed(V1, V2)/max(|V1|, |V2|) as prior probability, where ed(V1, V2)
is the edit distance between string values V1 and V2, and |Vi|
is the length of string Vi.

To measure effectiveness, we use the commonly used pre-
cision and recall. Precision measures the percentage of cor-
rectly identified duplicates contained over the total set of
objects determined as duplicates by the system. Recall mea-

2All duplicate data was generated using the Dirty XML
Generator available at http://www.hpi.uni-potsdam.de/

~naumann/projekte/dirtyxml.
3http://film-dienst.kim-info.de/
4http://www.freedb.org/

298

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

default = 0
default = 0.01

default = 0.1
default = 0.2
default = 0.5
default = 0.8

Figure 4: Effectiveness for varying default prob. ka

sures the percentage of duplicates correctly identified by the
system over the total set of duplicate objects.

5.3 Experiments
We now discuss experiments we performed to evaluate the

effectiveness of our approach.
Experiment 1. The first set of experiments aims at exam-
ining the impact of the choice of a default probability on the
performance of the model. To this end, we vary the default
probability ka (see Eq. 2) between 0 and 0.8. Fig. 4 shows
precision and recall for varying default probabilities on the
IMDB data set.
Discussion. Clearly, the choice of a default probability af-
fects effectiveness. For values below 0.2, objects with miss-
ing data are often considered as non-duplicates, because the
model behaves as if the missing elements were completely
different. This has a clear impact on recall, which reaches
a maximum of 79%. For values above 0.5, the opposite oc-
curs. In this case, the model is too permissive, assuming
a high similarity for elements that are missing. Thus, al-
though there is a visible increase in recall, precision drops
rapidly. Best results are achieved for values between 0.2 and
0.5. In the following experiments, we use default probability
value of 0.5, which maximizes both precision and recall.
Experiment 2. The next series of experiments were per-
formed to determine the impact of the quality of the data be-
ing processed on the performance of the model. To this end,
each error probability was varied between 0% and 50% when
generating duplicates in the IMDB dataset, while maintain-
ing the remaining at a fixed value. Figs. 5, 6, and 7 show
results for varying the probability of typographical errors,
duplicate erroneous data, and missing data, respectively.
Discussion. In Fig. 5, we observe that precision suffers very
little from the increase in typographical errors, maintaining
values close to 100%, even at high recall. The model is,
therefore, capable of dealing adequately with the occurrence
of errors in the textual data fields. This can also be observed
when the amount of duplicate erroneous data increases, as
shown in Fig. 6. Although the effect on precision is slightly
higher, the model is still able to maintain 99% precision for
recall values up to 84%.

On the other hand, varying the amount of missing data
has a much higher impact on the quality of the results, as
shown in Fig. 7. This is particularly evident in precision,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

no errors
10%
20%
30%
40%
50%

Figure 5: Precision and recall values for different
probabilities of occurrence of typographical errors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

no dup. elements
10%
20%
30%
40%
50%

Figure 6: Precision and recall values for different
amounts of duplicate erroneous data.

which drops sharply when data becomes incomplete. When
only 10% of the XML elements are missing, precision is still
above to 95% for recall values of about 74%. However, for
20% missing data this can only be achieved for recall values
below 55%. Nevertheless, for low recall values, precision still
remains quite high, even when 50% of the data is missing.
Experiment 3. To provide a better perspective on the re-
sults obtained by our proposal, the last set of experiments
compares the effectiveness of our approach to another XML
similarity measure specifically developed for XML duplicate
detection. More specifically, we compare to the state-of-
the-art XML duplicate detection similarity measure of Dog-
matiX [26]. DogmatiX uses two different similarity mea-
sures: the simple normalized edit distance, also used by the
BN model and the edit distance adjusted by the Inverse
Document Frequency (IDF) of the words in the values be-
ing compared. Using IDF assures that words that occur in
many objects are given less weight, since they contribute
less to distinguish between the objects. More details can be
found in [26].

We compare our approach to DogmatiX on all three data
sets in terms of effectiveness. On the IMDB data set, we

299

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

no missing data
10%
20%
30%
40%
50%

Figure 7: Precision and recall values for different
amounts of missing data.

perform the same experiments as described in Experiment 2,
but only show results where differences are significant, i.e.,
results for varying missing data (see Fig. 8). On the two
real-world data sets, we compare our method to DogmatiX
using IDF, as well as to DogmatiX without IDF. Because our
model does not use IDF, comparing to the latter variant is
more significant. Results on the IMDB+FilmDienst and the
FreeDB datasets are reported in Figs. 9 and 10, respectively.
All algorithms use a similarity threshold of 0.6 to distinguish
between duplicates and non-duplicates.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Dogmatix no miss.
BN model no miss.

Dogmatix 10%
BN model 10%
Dogmatix 50%
BN model 50%

Figure 8: Comparison between the Dogmatix sys-
tem and the BN model, for varying amounts of miss-
ing data.

Discussion. As can be observed in Fig. 8, when no data
is missing, both systems show a similar performance. Nev-
ertheless, for DogmatiX, precision drops below 90% when
recall reaches about 91%, whereas for the BN model this
drop only occurs for recall values higher than 99%. When
10% of the data is missing, the BN model shows a con-
sistent improvement over DogmatiX. Only for recall higher
than 76% does DogmatiX present higher precision values.
Further, we can see that the BN model has a much more
regular curve, indicating that it is more effective at avoiding

false duplicates in the highest ranked results. On the other
hand, DogmatiX is more resilient to the increase in miss-
ing data. At 50% missing data, although there is a clear
decrease in the final recall, precision values do not degrade
much, whereas for the BN model, precision drops rapidly for
recall values as low as 17%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Dogmatix w/IDF
Dogmatix no IDF

BN model

Figure 9: Precision and recall values on the inte-
grated IMDB+FilmDienst database.

Considering the results on the integrated IMDB+FilmDienst
dataset shown in Fig. 9, we see that the BN model is very
effective in detecting duplicates in this collection. Precision
remains above 92% and only shows a significant drop when
recall reaches about 80%, whereas DogmatiX, with the help
of IDF is able to maintain a similar precision only up to 60%
recall. Without using IDF, DogmatiX obtains very poor re-
sults. Note that the results shown in Fig. 8 only consider
the DogmatiX variant that uses IDF.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Dogmatix w/IDF
Dogmatix no IDF

BN model

Figure 10: Precision and recall values on the FreeDB
database.

This is also supported by the results on the 10.000 CDs
from FreeDB, shown in Fig. 10, where DogmatiX using IDF
significantly outperforms DogmatiX not using IDF. Overall,
DogmatiX using IDF shows the best results, being able to
retrieve 91% of the known duplicate items. In contrast, the
highest recall achieved by the BN model was 79%. On the

300

other hand, the BN model shows higher overall precision
values, always above 90% for recall levels from 7% to 66%.
The fact that this collection contains many dummy values
for many of the fields in the XML objects (e.g., “track1”,
“track2”, . . . , in the CD track titles, or “various artists”
in the artists’ names), explains the false positives among
the highest ranked results. It also explains why a similar-
ity measure that integrates IDF can provide more accurate
results.

Throughout our experiments, we see that our BN ap-
proach to similarity measurement is very effective in detect-
ing duplicates in XML data. However, it can still incorpo-
rate further improvements, such as the use of IDF to further
improve effectiveness. Before we conclude and discuss future
research directions, we provide an overview of related work.

6. RELATED WORK
The approach taken in this work is closely related to pre-

vious applications of Bayesian networks in the field of Infor-
mation Retrieval (IR). Bayesian network models were first
introduced in IR by Turtle and Croft in [24], with the pur-
pose of ranking search results. In their model, document
terms, documents and user queries are seen as events and
are represented as nodes in the network. The model takes
the viewpoint that the observation of a document induces
belief on its set of index terms, and that specification of such
terms induces belief in a user query or information need.
Later, a second model was proposed by Ribeiro-Neto and
Muntz in [21], demonstrating that BNs can be effectively
used to combine different types of information to further
improve search results. More recently, Acid et al. [1] pre-
sented a third model whose network topology is defined in
such way that an exact propagation algorithm can be used to
efficiently compute the relevance probabilities of documents.

Bayesian networks have also been applied to other IR
problems ranging from relevance feedback [11] to document
clustering and classification [9]. In this paper, we apply
Bayesian networks to effectively detect duplicates in hierar-
chical and semi-structured XML data.

Duplicate detection, originally defined by Newcombe et
al. [17] and formalized by Fellegi and Sunter [10] has been
studied extensively under various aspects. Broadly speak-
ing, research in duplicate detection falls into two categories:
techniques to improve effectiveness and techniques to im-
prove scalability both in space (data size processed) and in
time.

In Tab. 2, we summarize some duplicate detection meth-
ods, classifying them along two dimensions, namely data
and approach. For data, we distinguish between (i) data in
a single relational table (ii) tree data, and (iii) data repre-

Table Tree Graph
Learning Bil.03[5](E) Sin.05[23](E)

Sar.02[22](E) Bhat.06 [4](E)
ClusteringChau.05[6](E,S) Kala.06[14](E, S)

Yin06[29](E,S)
Iterative Her.95[12](S) Ana.02[2](E,S) Dong05[8](E)

Mon.97[16](S) Puh.06[19](S) Weis06[27](E,S)
Jin03[13](E,S) Mil.06 [15](E) Bhat.04[3](E)

Weis04 [25](E,T)
Weis05 [26](E)

Table 2: Summary of duplicate detection approaches
focusing on scalability (S) or effectiveness (E)

sented as a graph. The second dimension discerns between
three approaches used for duplicate detection: (i) machine
learning, where models and similarity measures are learned,
(ii) the use of clustering techniques, and (iii) iterative algo-
rithms that iteratively detect pairs of duplicates, which are
aggregated to clusters. In Tab. 2, we also show whether an
article mainly focuses on scalability (S) or effectiveness (E).

The work presented in this paper can be classified as
an approach to effectively detect duplicates in tree data.
Although learning can be used to improve the probability
model, it is not required and is not the focus of this article
so we classify it as an iterative algorithm. The novelty com-
pared to other similarity measures considering relationships
(i.e., applying on tree and graph data) is that it considers
duplicate probability of descendants, instead of the dupli-
cate status of direct neighbors (children) only.

The only similarity measure we are aware of that also con-
siders the complete sub-structure and uses more than just
the duplicate status of descendants is the structure-aware
similarity measure proposed by Milano et al. [15]. To com-
pare two candidate XML elements rooted at c and c′, a max-
imum overlay between the two trees T (c) and T (c′) is com-
puted. In this overlay, two non-leaf nodes can be matched
iff they are ancestors of two leaves that are matched. Once a
maximal overlay has been determined, its cost is computed.
The cost of a pair of leaf nodes in the overlay is defined
by a string distance function, e.g., the string edit distance.
For non-leaf nodes, the cost is set to 0. The total cost of
the overlay is the sum of costs of node pairs and is equal
to the distance between two XML trees rooted at c and c′.
Our similarity measure is more flexible as it leverages the
assumption that XML elements can only be duplicates if
their XML path from the root is equal. Another limitation
of the structure aware similarity measure is that the weight
of non-leaf nodes is 0, so the final result essentially depends
on the similarity of value nodes. This is not the case for our
similarity measure, where probabilities are also computed
for non-leaf nodes.

7. CONCLUSION AND OUTLOOK
This paper presents a novel method for XML duplicate

detection. Using a Bayesian network model, we are able to
accurately determine the probability of two XML objects in
a given database being duplicates. This model is derived
from the structure of the XML objects being compared and
all probabilities are computed taking into account not only
the values contained in the objects but also their internal
structure.

The Bayesian network model we propose not only provides
a formal basis for the duplicate detection procedure, but
also requires very little parameterization. In fact, all results
reported, using three distinct datasets, were obtained using
the same configuration, described in Sec. 3, and experiments
only required setting a single parameter—the default proba-
bility. Nevertheless, the model also provides great flexibility
in its configuration, allowing the use of different similarity
measures for the field values and different conditional prob-
abilities to combine the similarity probabilities of the XML
elements.

Experiments performed on both artificial and real-world
data show that the proposed model is able to achieve highly
accurate results, yielding both high precision and recall in
all cases. To further validate these results, we compared

301

our approach to a state-of-the-art XML duplicate detection
system, DogmatiX. The BN model has consistently shown
better results when DogmatiX did not use IDF to improve
effectiveness.

The success achieved through the experiments and the
flexibility provided by the proposed solution leaves open
room for much future work. Among other tasks, we intend
to study the use of IDF correction for textual values, the
use of domain dependent similarity measures for prior prob-
abilities, extend the BN model construction algorithm to
compare XML objects with different structures, experiment
with more collections and different network configurations,
and apply machine learning methods to derive the condi-
tional probabilities, based on existing data. Another issue
we intend to consider is that of scalability, both in space
and in time. To improve runtime, we can devise blocking
techniques to avoid computing probabilities. Scaling to large
amounts of data, and thus large Bayesian networks, requires
using external memory and also needs to be studied in the
future.

Acknowledgements
This work was partially supported by FCT project IR-

BASE (ref. POSC/EIA/58194/2004), by INRIA Futurs project
GEMO, and by GRICES project XClean.

8. REFERENCES
[1] S. Acid, L. M. de Campos, J. M. Fernández-Luna, and J. F.

Huete. An information retrieval model based on simple
bayesian networks. International Journal of Intelligent
Systems, 18(2):251–265, Jan. 2003.

[2] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In
Conference on Very Large Databases (VLDB), pages
586–597, Hong Kong, China, 2002.

[3] I. Bhattachary, L. Getoor, and L. Licamele. Query-time
entity resolution (poster). In Conference on Knowledge
Discovery and Data Mining (KDD), pages 529–534,
Philadelphia, PA, 2006.

[4] I. Bhattacharya and L. Getoor. A latent dirichlet model for
unsupervised entity resolution. In Conference on Data
Mining (SDM), Bethesda, MD, 2006.

[5] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Conference
on Knowledge Discovery and Data Mining (KDD), pages
39–48, Washington, DC, 2003.

[6] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In International
Conference on Data Engineering (ICDE), pages 865–876,
Tokyo, Japan, 2005.

[7] W. W. Cohen and J. Richman. Learning to match and
cluster large high-dimensional data sets for data
integration. In Conference on Knowledge Discovery and
Data Mining (KDD), pages 475–480, Edmonton, Alberta,
Canada, 2002.

[8] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In Conference
on the Management of Data (SIGMOD), pages 85–96,
Baltimore, MD, 2005.

[9] S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami.
Inductive learning algorithms and representations for text
categorization. In Proceedings of the 7th International
Conference on Information and Knowledge Management
CIKM 98, pages 148–155, Bethesda, MD, USA, Nov. 1998.

[10] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Association, 1969.

[11] D. Haines and W. B. Croft. Relevance feedback and
inference networks. In Proceedings of the 16th Annual

International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2–11,
Pittsburgh, PA, USA, June 1993.

[12] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In Conference on the
Management of Data (SIGMOD), pages 127–138, San Jose,
CA, 1995.

[13] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in
large data sets. In Conference on Database Systems for
Advanced Applications (DASFAA), Kyoto, Japan, 2003.

[14] D. V. Kalashnikov and S. Mehrotra. Domain-independent
data cleaning via analysis of entity-relationship graph.
ACM Transactions on Database Systems (TODS),
31(2):716–767, 2006.

[15] D. Milano, M. Scannapieco, and T. Catarci. Structure
aware xml object identification. In VLDB Workshop on
Clean Databases (CleanDB), Seoul, Korea, 2006.

[16] A. E. Monge and C. P. Elkan. An efficient
domain-independent algorithm for detecting approximately
duplicate database records. In SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery
(DMKD), Tucson, AZ, 1997.

[17] H. Newcombe, J. Kennedy, S. Axford, and A. James.
Automatic linkage of vital records. Science 130,
(3381):954–959, 1959.

[18] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of plausible inference. Morgan Kaufmann
Publishers, 2nd edition, 1988.

[19] S. Puhlmann, M. Weis, and F. Naumann. Xml duplicate
detection using sorted neigborhoods. In Conference on
Extending Database Technology (EDBT), pages 773–791,
Munich, Germany, 2006.

[20] E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23:3–13, 2000.

[21] B. Ribeiro-Neto and R. Muntz. A belief network model for
IR. In Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 253–260, Zurich, Switzerland,
Aug. 1996.

[22] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Conference on Knowledge
Discovery and Data Mining (KDD), pages 269–278,
Edmonton, Alberta, 2002.

[23] P. Singla and P. Domingos. Object identification with
attribute-mediated dependences. In Conference on
Principals and Practice of Knowledge Discovery in
Databases (PKDD), pages 297–308, Porto, Portugal, 2005.

[24] H. Turtle and W. B. Croft. Inference networks for
document retrieval. In Proceedings of the 13th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1–24,
Brussels, Belgium, Sept. 1990.

[25] M. Weis and F. Naumann. Duplicate detection in xml. In
SIGMOD Workshop on Information Quality in
Information Systems (IQIS), pages 10–19, Paris, France,
2004.

[26] M. Weis and F. Naumann. Dogmatix tracks down
duplicates in xml. In Conference on the Management of
Data (SIGMOD), pages 431–442, Baltimore, MD, 2005.

[27] M. Weis and F. Naumann. Detecting duplicates in complex
xml data. In International Conference on Data
Engineering (ICDE), Atlanta, GA, 2006.

[28] W. E. Winkler. Overview of record linkage and current
research directions. Technical report, U. S. Bureau of the
Census, 2006.

[29] X. Yin, J. Han, and P. S. Yu. LinkClus: Efficient clustering
via heterogeneous semantic links. In Conference on Very
Large Databases (VLDB), pages 427–438, Seoul, Korea,
2006.

302

	Detecção de Duplicados em Bases de Dados XML.pdf
	p293-leitao

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

